

기술사 제134회 시험시간: 100분

				• -		
분	ઝો <u>ગો</u>	조모	고고내도기계키스기		성	
야	기계	84	공조냉동기계기술사 번호		명	

- ※ 총 13문제 중 10문제를 선택하여 설명하시오. (각 10점)
- 1. 건물의 열평형 방정식에 대하여 설명하시오.
- 2. 여름철 냉방시 사용되는 전열교환기에 대하여 다음 사항을 각각 설명하시오.
 - 1) 전열효율과 전열회수량의 각각의 식
 - 2) 상태변화를 습공기선도로 표시
- 3. 냉각탑(Cooling Tower)에 대하여 다음 사항을 각각 설명하시오.
 - 1) 쿨링 레인지(Cooling Range)
 - 2) 쿨링 어프로치(Cooling Approach)
- 4. 열환경지표에서 풍속을 고려한 체감온도를 관련식을 포함하여 설명하시오.
- 5. 절대압력과 게이지압력을 각각 설명하시오.
- 6. 이상기체 거동을 하기 위한 조건(가정)을 설명하고, 보일의 법칙, 샤를의 법칙, 아보 가드로의 법칙을 이용하여 이상기체 상태방정식을 유도하시오.
- 7. 표준냉동사이클을 설명하고 몰리에르선도를 그리시오.

기술사 제134회 시험시간: 100분

	. , , ,			, <u>p</u>		
분	기계		구조내도기계기수사 ^{수험}		성	
야	71741	9 7	공조냉동기계기술사 번호		명	

- 8. 냉동기 압축기에서 발생하는 오일포밍에 대하여 다음 사항을 각각 설명하시오.
 - 1) 오일포밍 원인
 - 2) 오일포밍 문제점
 - 3) 오일포밍 방지대책
- 9. 이원냉동사이클(Two-stage Cascade Refrigeration Cycle)에 대하여 설명하시오.
- 10. 냉동 장치에 사용되는 증발압력 조절밸브(EPR), 흡입압력 조절밸브(SPR), 응축압력 조절밸브(CPR)에 대하여 설치 위치와 사용 목적을 각각 설명하시오.
- 11. RE100(Renewable Energy 100%)과 CF100(Carbon Free 100%)에 대하여 각각 설명하시오.
- 12. 냉동창고에 적용되는 단열 방식의 종류를 쓰고 각각 설명하시오.
- 13. 공공기관 에너지 이용 합리화 추진에 관한 규정에 의한 ESS(Energy Storage System) 설치 의무화 제도에 대하여 설명하시오.

기술사 제134회 시험시간: 100분

 분
 기계
 종목
 공조냉동기계기술사
 수험
 성명

▶수험자 응시 종목 일치 여부, 문제지 인쇄 상태 및 교시별 문제수를 반드시 확인하시오◀

※ 총 6문제 중 4문제를 선택하여 설명하시오. (각 25점)

- 1. 사람 신체의 열수지차에 의한 온열환경지표에 대하여 각각 설명하시오,
 - 1) OT(Operative Temperature) (단, 관련식 포함하여 설명하시오.)
 - 2) ET(Effective Temperature)
 - 3) CET(Corrected Effective Temperature)
- 2. 송풍기에서 풍량제어의 중요성에 대하여 설명하고 다음 사항에 대한 운전특성곡선과 장단점에 대하여 각각 설명하시오.
 - 1) 송풍기에서 풍량제어의 중요성
 - 2) 토출댐퍼 제어
 - 3) 흡입댐퍼 제어
 - 4) 흡입베인 제어
 - 5) 회전수 변경에 의한 제어
 - 6) 가변피치 제어
- 3. 펌프에서 발생되는 현상에 대하여 각각 설명하시오.
 - 1) 캐비테이션(Cavitation)
 - 2) 수격(Water Hammering)
 - 3) 서징(Surging)

기술사 제134회 시험시간: 100분

	- , , , , , , , , , , , , , , , , , , ,			· –	<u>' </u>	
분	기계			- 험	성	
야	/ / / / / / / / / / / / / / / / / / /	87	중소성동기계기출사 	호	명	

▶수험자 응시 종목 일치 여부, 문제지 인쇄 상태 및 교시별 문제수를 반드시 확인하시오◀

- 4. VE(Value Engineering)에 대하여 다음 사항을 각각 설명하시오.
 - 1) 정의
 - 2) 기본원칙
 - 3) 실시효과
 - 4) 도입 시 고려사항
- 5. CA냉장방법에 대하여 다음 사항을 각각 설명하시오.
 - 1) 재래법
 - 2) Generator법
 - 3) Oxtrol식(병용법)
 - 4) 재래법과 Generator법의 특성 비교
- 6. 대향류 이중관(counter flow double pipe), 저온유체 입구온도 $t_{ci} = 20$ °C, 출구온도 $t_{co} = 50$ °C, 질량유량 $\dot{m}_c = 1.6$ kg/s, 비열 $c_c = 4.2$ kJ/(kg°C), 고온유체 입구온도 $t_{hi} = 90$ °C, 질량유량 $\dot{m}_h = 2.0$ kg/s, 비열 $c_h = 3.6$ kJ/(kg°C), 두 유체 사이의 총괄열전달계수 U = 160 W/(m²°C), 열손실은 없다고 가정할 때 다음을 구하시오.
 - 1) 필요한 열전달 면적 A(m²)를 구하시오.
 - 2) 동일한 유체 조건에 대하여 평행류 이중관(Parallel Flow Double Pipe)으로 열교환 할 때 필요한 열전달 면적 $A(m^2)$ 를 구하시오.

2 - 2

기술사 제134회 시험시간: 100분

분	ઝો <u>ગો</u>	조모	고고비도기계기수기	성	
야	기계	궁곡	공조냉동기계기술사 번호	명	

▶수험자 응시 종목 일치 여부, 문제지 인쇄 상태 및 교시별 문제수를 반드시 확인하시오◀

※ 총 6문제 중 4문제를 선택하여 설명하시오. (각 25점)

- 1. 공조시스템에서 실내 공기에 대하여 다음을 각각 설명하시오.
 - 1) 실내로 들어오거나 발생되는 오염물질 총량과 실외로 나가는 오염물질의 총량에 대한 관련식
 - 2) 실내공기의 오염농도 관련식
 - 3) 실내공기의 오염농도를 유지하기 위한 도입외기량 관련식
- 2. 환기 설비에서 다음을 설명하시오.
 - 1) 일반거실과 특수거실 환기방식 각각 설명
 - 2) 거실인원 확정과 미확정인 경우 필요 환기량 계산식
 - 3) 일반건축물 CO, 농도를 기준으로 할 때 필요 환기량 계산식
- 3. 열과 관련하여 다음을 각각 설명하시오.
 - 1) 열역학법칙
 - 제()법칙
 - 제1법칙
 - 제2법칙
 - 제3법칙
 - 2) 열전달 메커니즘(Mechanism)

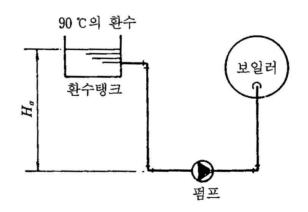
2 - 1

기술사 제134회 시험시간: 100분

	- , ,, ,			, ,		
분	기계	조모	고조내도기계기스시		성	
야	/	궁득	공조냉동기계기술사 <mark>' </mark>		명	

- 4. 열전현상에 대하여 다음을 각각 설명하시오.
 - 1) 제백효과(Seebeck Effect)
 - 2) 펠티에효과(Peltier Effect)
 - 3) 톰슨효과(Thomson Effect)
- 5. 수소연료전지에 대하여 다음을 각각 설명하시오.
 - 1) 수소연료전지 작동원리
 - 2) 수소연료전지 문제점
 - 3) 수소연료전지 문제점에 대한 해결방안
- 6. 제로에너지 건축물 인증제도에 대하여 다음을 각각 설명하시오.
 - 1) 건축물 인증제도의 정의
 - 2) 인증 의무대상
 - 3) 인증 기준
 - 4) 추진 목적

기술사 제134회 시험시간: 100분


<u> </u>	_	11201-1			1 12		100 E
뷴	1_	기계	좆모	공조냉동기계기술사 <mark>수</mark> 학	험	성	
0	}	* 1 * 11	0 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>ই</u>	명	

▶수험자 응시 종목 일치 여부, 문제지 인쇄 상태 및 교시별 문제수를 반드시 확인하시오◀

- ※ 총 6문제 중 4문제를 선택하여 설명하시오. (각 25점)
- 1. 보일러에 대하여 다음을 각각 설명하시오. (단, 관련식은 SI단위로 표기하시오.)
 - 1) 보일러의 과부하, 정격, 상용, 정미 출력
 - 2) 온수와 증기 발생열량 관련식
 - 3) 온수와 증기 상당방열면적(EDR) 관련식
- 2. 90 ℃의 환수를 보일러에 급수하는 장치에 대하여 각각 설명하시오.

(단, 펌프의 토출량은 1.5 m³/min, 양정은 60 m, 토마의 캐비테이션계수는 0.09, 회전수는 1500 rpm의 3단 볼류트 펌프이고, 흡입관의 마찰저항은 2 m로 한다.)

- 1) 펌프 임펠러 1단에 대한 양정
- 2) 비교회전수
- 3) 환수탱크의 수위 (단, 펌프를 기준으로 얼마나 높게 설치하는지 설명하시오.)

3 - 1

기술사 제134회 시험시간: 100분

분 야 기계 종목 공조냉동기계기술사 <mark>수험</mark> 번호 명

▶수험자 응시 종목 일치 여부, 문제지 인쇄 상태 및 교시별 문제수를 반드시 확인하시오◀

▶물의 밀도와 포화증기압력[SI단위]

온도 [°C]	밀도 [kg/m^3]	포화증기압력 (P_{vp}) $[\ Pa\cdot abs\]$	온도 [°C]	밀도 $\left[kg/m^3 ight]$	포화증기압력 (P_{vp}) $[\ Pa\cdot abs\]$
0	999	0.61×10 ³	85	969	57.86×10 ³ 70.12×10 ³ 84.53×10 ³ 101.32×10 ³ 120.62×10 ³
5	1,000	0.87×10 ³	90	965	
10	999	1.22×10 ³	95	962	
15	999	1.17×10 ³	100	958	
20	998	2.33×10 ³	105	955	
25	997	3.18×10 ³	110	951	133.18×10 ³
30	995	4.24×10 ³	115	947	168.67×10 ³
35	994	5.62×10 ³	120	943	198.09×10 ³
40	992	7.38×10 ³	125	939	232.42×10 ³
45	990	9.59×10 ³	130	935	269.68×10 ³
50	998	12.36×10 ³ 15.79×10 ³ 19.91×10 ³ 25.01×10 ³ 31.19×10 ³ 38.54×10 ³	135	931	312.83×10 ³
55	986		140	926	360.89×10 ³
60	963		145	922	415.80×10 ³
65	981		150	917	4758.62×10 ³
70	977		155	912	543.29×10 ³
75	975		160	907	617.82×10 ³
80	972	47.37×10 ³	-	-	-

- 3. 히트펌프에 대하여 다음을 각각 설명하시오.
 - 1) 히트펌프의 개념과 특징
 - 2) 냉방과 난방 운전시 성적계수(COP: Coefficiency of Performance)
 - 3) 냉난방기의 냉방과 난방 운전 시 히트펌프 사이클 (단, 4방밸브, 실외기, 실내기 등을 포함한 간략한 구성도와 냉매 흐름방향을 포함)

기술사 제134회 시험시간: 100분

_	, -	- 1 1201			1 12	<u> </u>	<u> </u>
	분	기계	ネ ワ	고고내도기계기스시		성	
	야	71 <i>7</i> 41 	궁국	공조냉농기계기술사 번호		명	

- 4. 동결건조에 대하여 다음을 각각 설명하시오.
 - 1) 식품의 동결건조
 - 2) 동결건조 장치인 동결건조기
- 5. 기계설비 기술기준에서 정하고 있는 기계실과 샤프트의 계획 기준에 대하여 각각 설명하시오.
 - 1) 기계실 유지관리 공간확보 기준
 - 2) 샤프트 유지관리 공간확보 기준
- 6. 대기환경보전법에서 정한 냉매의 관리 기준에 대하여 각각 설명하시오.
 - 1) 일반기준
 - 2) 냉매사용기기의 유지 · 보수기준
 - 3) 냉매의 회수기준
 - 4) 냉매의 처리기준